If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-51x+5=0
a = 5; b = -51; c = +5;
Δ = b2-4ac
Δ = -512-4·5·5
Δ = 2501
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-51)-\sqrt{2501}}{2*5}=\frac{51-\sqrt{2501}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-51)+\sqrt{2501}}{2*5}=\frac{51+\sqrt{2501}}{10} $
| -66=3(5b-2) | | 5x+x+23=3x+34 | | 4,8/15,36=x/8 | | -z+1=1-z | | 64x^2+64x+16=0 | | 64x2+64x+16=0 | | x=0.02x^2+0.05x+0.04 | | 18=3y= | | 81z^2-4=0 | | 18-(3a-12)=8a | | -2(-2y+2)=16 | | -2(-2y=2)=16 | | 4x+33=-8x+9+5x | | 3a+7=12+4a | | 27x^2-72x-27=0 | | 15n/12=5 | | 1-x/14=10 | | 3(x-7)+5x=13+10x | | (1/4)-(5/6)=(1/a) | | (5+3)=4y | | v=1/3*3.14*16*6 | | 8x-8x+3x=0 | | 5(t-5)-3(2t-5)=25-8(3t+5) | | X3-12x=-96 | | 9x-25=11 | | 2x+3x+5+4x-14=360 | | 4x(x-5)=4x-5 | | 3(2y-1)=2(4y-5) | | 3(2y-1=2(4y-5) | | 6(2z-1)=7z+4 | | 2u+6=3+-3u+23 | | -.7x+2.8=-3.14x-5.2 |